Transmitter EC28

for toxic gases, oxygen and hydrogen

- ATEX certified ©II 2 G EEx em [ib] IIC T4
- One-man calibration at transmitter via remote control
- Plug-in Smart Sensor
- Sensor replacement without opening housing

Transmitter EC28

Superior technology

Wherever gas hazards are to be expected, the transmitter EC28 and GfG's proven control systems are the right choice for reliable surveillance. The ATEX-certified design provides the highest safety even in hazardous areas. LEDs indicate operation (green) or fault (red).

Smart sensors

Smart Sensor technology allows the user to install the transmitter or to replace a sensor within a few seconds – just plug the sensor into the transmitter. Adjustments are done directly at the transmitter via the remote control (one man calibration).

Remote Control RC2

Ammonia and hydrogen are lighter than air. With the transmitter installed close to the ceiling you can provide permanently connected cable with plugs for the remote control, which allows the user to do all adjustments without having to climb a ladder. One remote control can be used for several transmitters. The remote control always shows the same reading as the transmitter. The remote control simplifies inspection, service and calibration considerably. In addition to this, the remote control reads the current gas concentration and can be used as an external display.

Reliable detection and minimized cost of ownership

The sensor and integrated temperature compensation provide highest measurement accuracy. Low maintenance requirements and long sensor life reduce your cost of ownership.

Versions

EC28 D with display of actual gas concentration.

EC28 DA with display, bright alarm LED and integrated buzzer. No need for an expensive Ex-proof buzzer means less wiring costs.

EC28 DAR includes a relay for additional external alarm devices.

EC28 B with BUS-interface.

EC28 DB with BUS-interface and with display of actual gas concentration.

EC28 DAB with BUS-interface, with display of actual gas concentration and with bright alarm LED and integrated buzzer. No need for an expensive Ex-proof buzzer means less wiring costs.

EC28 i intrinsically safe model.

EC28 Di intrinsically safe and with display of actual gas concentration.

In combination with GfG´s flexible control units the transmitter EC28 provides many possibilites for reliable and cost effective monitoring of specific gases.

RC2 with EC28 DA

Advantages at a glance

- · ATEX-approval
- · Plug-in smart sensor for easy sensor replacement
- · Long sensor life
- · Low service requirement
- · LED function display
- Calibration without opening housing
- Remote control with display for easy adjustments
- Display of gas concentration at remote control

Transmitter EC28 Technical Data

Detection principle:

Electrochemical sensor

Ambient temperature:

-20°C .. +50°C

Output signal:

4 – 20 mA

Supply voltage:

15 – 30 V DC

Weight:

800 g with display

Dimensions:

100x193x55 mm (WxHxD)

Casing protection:

IP64

ATEX labelling:

C€0158

Display:

LED for operation / fault

Transmitter cable:

Shielded cable 2/3/6 x 0.75mm² M 16 x 1,5

Gases and Detection Ranges (ppm) All detection ranges are scalable - except HF and O₃ (0 - 1 ppm)

Ammonia NH ₃	Chlorine Cl ₂	Chlorine dioxide CIO ₂	Hydrogen chloride HCl	Hydro cyanide HCN	Ethylene oxide C ₂ H ₄ O	Hydrogen fluoride HF	Carbon monoxide CO
0 - 200 0 - 500 0 - 1000	0 - 50 0 - 250	0 - 2	0 - 30 0 - 200	0 - 50 0 - 200	0 - 100	0 - 10	0 - 500 0 - 2000

Ozon O ₃	Phosgene COCI ₂	Oxygen O ₂	Sulphur dioxide SO ₂	Hydrogen sulphide H₂S	Silane SiH ₄	Nitrogen dioxide NO ₂	Nitrogen monoxide NO	Hydrogen ${\sf H_2}$
0 - 1 0 - 5	0 - 2	0 - 30 Vol%	0 - 50 0 - 500	0 - 200 0 - 1000	0 - 50	0 - 50 0 - 200	0 - 300 0 - 1500	0 - 2000 0 - 1 Vol% 0 - 4 Vol%

